Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.354
Filtrar
1.
Bioinformatics ; 40(4)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38561180

RESUMO

SUMMARY: Sequence technology advancements have led to an exponential increase in bacterial genomes, necessitating robust taxonomic classification methods. The Percentage Of Conserved Proteins (POCP), proposed initially by Qin et al. (2014), is a valuable metric for assessing prokaryote genus boundaries. Here, I introduce a computational pipeline for automated POCP calculation, aiming to enhance reproducibility and ease of use in taxonomic studies. AVAILABILITY AND IMPLEMENTATION: The POCP-nf pipeline uses DIAMOND for faster protein alignments, achieving similar sensitivity to BLASTP. The pipeline is implemented in Nextflow with Conda and Docker support and is freely available on GitHub under https://github.com/hoelzer/pocp. The open-source code can be easily adapted for various prokaryotic genome and protein datasets. Detailed documentation and usage instructions are provided in the repository.


Assuntos
Células Procarióticas , Software , Reprodutibilidade dos Testes , Genoma Bacteriano
2.
Sci Rep ; 14(1): 9155, 2024 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-38644393

RESUMO

Deep learning models (DLMs) have gained importance in predicting, detecting, translating, and classifying a diversity of inputs. In bioinformatics, DLMs have been used to predict protein structures, transcription factor-binding sites, and promoters. In this work, we propose a hybrid model to identify transcription factors (TFs) among prokaryotic and eukaryotic protein sequences, named Deep Regulation (DeepReg) model. Two architectures were used in the DL model: a convolutional neural network (CNN), and a bidirectional long-short-term memory (BiLSTM). DeepReg reached a precision of 0.99, a recall of 0.97, and an F1-score of 0.98. The quality of our predictions, the bias-variance trade-off approach, and the characterization of new TF predictions were evaluated and compared against those produced by DeepTFactor, as well as against experimental data from three model organisms. Predictions based on our DLM tended to exhibit less variance and bias than those from DeepTFactor, thus increasing reliability and decreasing overfitting.


Assuntos
Aprendizado Profundo , Fatores de Transcrição , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Biologia Computacional/métodos , Células Procarióticas/metabolismo , Redes Neurais de Computação , Eucariotos/genética , Genoma , Células Eucarióticas/metabolismo , Sítios de Ligação
3.
Int J Mol Sci ; 25(7)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38612810

RESUMO

Light is a key environmental component influencing many biological processes, particularly in prokaryotes such as archaea and bacteria. Light control techniques have revolutionized precise manipulation at molecular and cellular levels in recent years. Bacteria, with adaptability and genetic tractability, are promising candidates for light control studies. This review investigates the mechanisms underlying light activation in bacteria and discusses recent advancements focusing on light control methods and techniques for controlling bacteria. We delve into the mechanisms by which bacteria sense and transduce light signals, including engineered photoreceptors and light-sensitive actuators, and various strategies employed to modulate gene expression, protein function, and bacterial motility. Furthermore, we highlight recent developments in light-integrated methods of controlling microbial responses, such as upconversion nanoparticles and optical tweezers, which can enhance the spatial and temporal control of bacteria and open new horizons for biomedical applications.


Assuntos
Nanopartículas , Células Procarióticas , Archaea/genética , Pinças Ópticas
4.
J Hazard Mater ; 470: 134135, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38574656

RESUMO

Sb(III) and As(III) share similar chemical features and coexist in the environment. However, their oxidase enzymes have completely different sequences and structures. This raises an intriguing question: Could Sb(III)-oxidizing prokaryotes (SOPs) also oxidize As(III), and vice versa? Regarding this issue, previous investigations have yielded unclear, incorrect and even conflicting data. This work aims to address this matter. First, we prepared an enriched population of SOPs that comprises 55 different AnoA genes, lacking AioAB and ArxAB genes. We found that these SOPs can oxidize both Sb(III) and As(III) with comparable capabilities. To further confirm this finding, we isolated three cultivable SOP strains that have AnoA gene, but lack AioAB and ArxAB genes. We observed that they also oxidize both Sb(III) and As(III) under both anaerobic and aerobic conditions. Secondly, we obtained an enriched population of As(III)-oxidizing prokaryotes (AOPs) from As-contaminated soils, which comprises 69 different AioA genes, lacking AnoA gene. We observed that the AOP population has significant As(III)-oxidizing activities, but lack detectable Sb(III)-oxidizing activities under both aerobic and anaerobic conditions. Therefore, we convincingly show that SOPs can oxidize As(III), but AOPs cannot oxidize Sb(III). These findings clarify the previous ambiguities, confusion, errors or contradictions regarding how SOPs and AOPs oxidize each other's substrate.


Assuntos
Antimônio , Oxirredução , Anaerobiose , Aerobiose , Antimônio/metabolismo , Células Procarióticas/metabolismo , Microbiologia do Solo , Bactérias/metabolismo , Bactérias/genética , Poluentes do Solo/metabolismo
5.
Sci Rep ; 14(1): 6728, 2024 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509138

RESUMO

Biofilms are important in the natural process of plant tissue degradation. However, fundamental knowledge of biofilm community structure and succession on decaying leaves under different oxygen conditions is limited. Here, we used 16S rRNA and ITS gene amplicon sequencing to investigate the composition, temporal dynamics, and community assembly processes of bacterial and fungal biofilms on decaying leaves in vitro. Leaves harvested from three plant species were immersed in lake water under aerobic and anaerobic conditions in vitro for three weeks. Biofilm-covered leaf samples were collected weekly and investigated by scanning electron microscopy. The results showed that community composition differed significantly between biofilm samples under aerobic and anaerobic conditions, though not among plant species. Over three weeks, a clear compositional shift of the bacterial and fungal biofilm communities was observed. The alpha diversity of prokaryotes increased over time in aerobic assays and decreased under anaerobic conditions. Oxygen availability and incubation time were found to be primary factors influencing the microbial diversity of biofilms on different decaying plant species in vitro. Null models suggest that stochastic processes governed the assembly of biofilm communities of decaying leaves in vitro in the early stages of biofilm formation and were further shaped by niche-associated factors.


Assuntos
Bactérias , Biofilmes , RNA Ribossômico 16S/genética , Bactérias/genética , Células Procarióticas , Folhas de Planta
6.
Genes (Basel) ; 15(3)2024 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-38540387

RESUMO

Prokaryotic genomes are dynamic tapestries that are strongly influenced by mobile genetic elements (MGEs), including transposons (Tn's), plasmids, and bacteriophages. Of these, miniature inverted-repeat transposable elements (MITEs) are undoubtedly the least studied MGEs in bacteria and archaea. This review explores the diversity and distribution of MITEs in prokaryotes and describes what is known about their functional roles in the host and involvement in genomic plasticity and evolution.


Assuntos
Elementos de DNA Transponíveis , Genômica , Elementos de DNA Transponíveis/genética , Células Procarióticas , Bactérias/genética , Archaea/genética
8.
Environ Microbiol Rep ; 16(2): e13236, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38444282

RESUMO

Corals engage in symbioses with micro-organisms that provide nutrients and protect the host. Where the prokaryotic microbes perform their symbiotic functions within a coral is, however, poorly understood. Here, we studied the tissue-specific microbiota of the coral Corallium rubrum by dissecting its tissues from the skeleton and separating the white polyps from the red-coloured coenenchyme, followed by 16S rRNA gene metabarcoding of the three fractions. Dissection was facilitated by incubating coral fragments in RNAlater, which caused tissues to detach from the skeleton. Our results show compartmentalisation of the microbiota. Specifically, Endozoicomonas, Parcubacteria and a Gammaproteobacteria were primarily located in polyps, whereas Nitrincolaceae and one Spirochaeta phylotype were found mainly in the coenenchyme. The skeleton-associated microbiota was distinct from the microbiota in the tissues. Given the difference in tissue colour and microbiota of the polyps and coenenchyme, we analysed the microbiota of three colormorphs of C. rubrum (red, pink, white), finding that the main difference was a very low abundance of Spirochaeta in white colormorphs. While the functions of C. rubrum's symbionts are unknown, their localisation within the colony suggests that microhabitats exist, and the presence of Spirochaeta appears to be linked to the colour of C. rubrum.


Assuntos
Antozoários , Gammaproteobacteria , Animais , RNA Ribossômico 16S/genética , Bactérias/genética , Células Procarióticas , Gammaproteobacteria/genética
9.
Microbiol Spectr ; 12(4): e0007224, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38456669

RESUMO

Microbial community assembly results from the interaction between biotic and abiotic factors. However, environmental selection is thought to predominantly shape communities in extreme ecosystems. Salar de Huasco, situated in the high-altitude Andean Altiplano, represents a poly-extreme ecosystem displaying spatial gradients of physicochemical conditions. To disentangle the influence of abiotic and biotic factors, we studied prokaryotic and eukaryotic communities from microbial mats and underlying sediments across contrasting areas of this athalassohaline ecosystem. The prokaryotic communities were primarily composed of bacteria, notably including a significant proportion of photosynthetic organisms like Cyanobacteria and anoxygenic photosynthetic members of Alpha- and Gammaproteobacteria and Chloroflexi. Additionally, Bacteroidetes, Verrucomicrobia, and Deltaproteobacteria were abundantly represented. Among eukaryotes, photosynthetic organisms (Ochrophyta and Archaeplastida) were predominant, alongside relatively abundant ciliates, cercozoans, and flagellated fungi. Salinity emerged as a key driver for the assembly of prokaryotic communities. Collectively, abiotic factors influenced both prokaryotic and eukaryotic communities, particularly those of algae. However, prokaryotic communities strongly correlated with photosynthetic eukaryotes, suggesting a pivotal role of biotic interactions in shaping these communities. Co-occurrence networks suggested potential interactions between different organisms, such as diatoms with specific photosynthetic and heterotrophic bacteria or with protist predators, indicating influences beyond environmental selection. While some associations may be explained by environmental preferences, the robust biotic correlations, alongside insights from other ecosystems and experimental studies, suggest that symbiotic and trophic interactions significantly shape microbial mat and sediment microbial communities in this athalassohaline ecosystem.IMPORTANCEHow biotic and abiotic factors influence microbial community assembly is still poorly defined. Here, we explore their influence on prokaryotic and eukaryotic community assembly within microbial mats and sediments of an Andean high-altitude polyextreme wetland system. We show that, in addition to abiotic elements, mutual interactions exist between prokaryotic and eukaryotic communities. Notably, photosynthetic eukaryotes exhibit a strong correlation with prokaryotic communities, specifically diatoms with certain bacteria and other protists. Our findings underscore the significance of biotic interactions in community assembly and emphasize the necessity of considering the complete microbial community.


Assuntos
Ecossistema , Áreas Alagadas , Biodiversidade , Células Procarióticas , Bactérias/genética , Fungos
10.
PLoS One ; 19(3): e0298641, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38478526

RESUMO

BACKGROUND: Genomic islands (GIs) are mobile genetic elements that integrate site-specifically into bacterial chromosomes, bearing genes that affect phenotypes such as pathogenicity and metabolism. GIs typically occur sporadically among related bacterial strains, enabling comparative genomic approaches to GI identification. For a candidate GI in a query genome, the number of reference genomes with a precise deletion of the GI serves as a support value for the GI. Our comparative software for GI identification was slowed by our original use of large reference genome databases (DBs). Here we explore smaller species-focused DBs. RESULTS: With increasing DB size, recovery of our reliable prophage GI calls reached a plateau, while recovery of less reliable GI calls (FPs) increased rapidly as DB sizes exceeded ~500 genomes; i.e., overlarge DBs can increase FP rates. Paradoxically, relative to prophages, FPs were both more frequently supported only by genomes outside the species and more frequently supported only by genomes inside the species; this may be due to their generally lower support values. Setting a DB size limit for our SMAll Ranked Tailored (SMART) DB design speeded runtime ~65-fold. Strictly intra-species DBs would tend to lower yields of prophages for small species (with few genomes available); simulations with large species showed that this could be partially overcome by reaching outside the species to closely related taxa, without an FP burden. Employing such taxonomic outreach in DB design generated redundancy in the DB set; as few as 2984 DBs were needed to cover all 47894 prokaryotic species. CONCLUSIONS: Runtime decreased dramatically with SMART DB design, with only minor losses of prophages. We also describe potential utility in other comparative genomics projects.


Assuntos
Genoma Bacteriano , Ilhas Genômicas , Genômica , Bactérias/genética , Células Procarióticas , Prófagos/genética
11.
ISME J ; 18(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38366199

RESUMO

Duplication is a major route for the emergence of new gene functions. However, the emergence of new gene functions via this route may be reduced in prokaryotes, as redundant genes are often rapidly purged. In lineages with compact, streamlined genomes, it thus appears challenging for novel function to emerge via duplication and divergence. A further pressure contributing to gene loss occurs under Black Queen dynamics, as cheaters that lose the capacity to produce a public good can instead acquire it from neighbouring producers. We propose that Black Queen dynamics can favour the emergence of new function because, under an emerging Black Queen dynamic, there is high gene redundancy spread across a community of interacting cells. Using computational modelling, we demonstrate that new gene functions can emerge under Black Queen dynamics. This result holds even if there is deletion bias due to low duplication rates and selection against redundant gene copies resulting from the high cost associated with carrying a locus. However, when the public good production costs are high, Black Queen dynamics impede the fixation of new functions. Our results expand the mechanisms by which new gene functions can emerge in prokaryotic systems.


Assuntos
Família Multigênica , Células Procarióticas , Evolução Molecular
12.
PLoS Comput Biol ; 20(2): e1011860, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38335232

RESUMO

The complex eukaryotic cell resulted from a merger between simpler prokaryotic cells, yet the role of the mitochondrial endosymbiosis with respect to other eukaryotic innovations has remained under dispute. To investigate how the regulatory challenges associated with the endosymbiotic state impacted genome and network evolution during eukaryogenesis, we study a constructive computational model where two simple cells are forced into an obligate endosymbiosis. Across multiple in silico evolutionary replicates, we observe the emergence of different mechanisms for the coordination of host and symbiont cell cycles, stabilizing the endosymbiotic relationship. In most cases, coordination is implicit, without signaling between host and symbiont. Signaling only evolves when there is leakage of regulatory products between host and symbiont. In the fittest evolutionary replicate, the host has taken full control of the symbiont cell cycle through signaling, mimicking the regulatory dominance of the nucleus over the mitochondrion that evolved during eukaryogenesis.


Assuntos
Evolução Biológica , Simbiose , Simbiose/genética , Células Eucarióticas/metabolismo , Células Procarióticas/metabolismo , Eucariotos/genética , Filogenia
13.
Sci Adv ; 10(5): eadk9345, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38306423

RESUMO

Subcellular compartments often serve to store nutrients or sequester labile or toxic compounds. As bacteria mostly do not possess membrane-bound organelles, they often have to rely on protein-based compartments. Encapsulins are one of the most prevalent protein-based compartmentalization strategies found in prokaryotes. Here, we show that desulfurase encapsulins can sequester and store large amounts of crystalline elemental sulfur. We determine the 1.78-angstrom cryo-EM structure of a 24-nanometer desulfurase-loaded encapsulin. Elemental sulfur crystals can be formed inside the encapsulin shell in a desulfurase-dependent manner with l-cysteine as the sulfur donor. Sulfur accumulation can be influenced by the concentration and type of sulfur source in growth medium. The selectively permeable protein shell allows the storage of redox-labile elemental sulfur by excluding cellular reducing agents, while encapsulation substantially improves desulfurase activity and stability. These findings represent an example of a protein compartment able to accumulate and store elemental sulfur.


Assuntos
Bactérias , Proteínas de Bactérias , Proteínas de Bactérias/metabolismo , Bactérias/metabolismo , Células Procarióticas/metabolismo , Oxirredução , Enxofre/metabolismo
14.
Environ Microbiol ; 26(3): e16594, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38418376

RESUMO

The availability of alginate, an abundant macroalgal polysaccharide, induces compositional and functional responses among marine microbes, but these dynamics have not been characterized across the Pacific Ocean. We investigated alginate-induced compositional and functional shifts (e.g., heterotrophic production, glucose turnover, hydrolytic enzyme activities) of microbial communities in the South Subtropical, Equatorial, and Polar Frontal North Pacific in mesocosms. We observed that shifts in response to alginate were site-specific. In the South Subtropical Pacific, prokaryotic cell counts, glucose turnover, and peptidase activities changed the most with alginate addition, along with the enrichment of the widest range of particle-associated taxa (161 amplicon sequence variants; ASVs) belonging to Alteromonadaceae, Rhodobacteraceae, Phormidiaceae, and Pseudoalteromonadaceae. Some of these taxa were detected at other sites but only enriched in the South Pacific. In the Equatorial Pacific, glucose turnover and heterotrophic prokaryotic production increased most rapidly; a single Alteromonas taxon dominated (60% of the community) but remained low (<2%) elsewhere. In the North Pacific, the particle-associated community response to alginate was gradual, with a more limited range of alginate-enriched taxa (82 ASVs). Thus, alginate-related ecological and biogeochemical shifts depend on a combination of factors that include the ability to utilize alginate, environmental conditions, and microbial interactions.


Assuntos
Alginatos , Alteromonadaceae , Oceano Pacífico , Células Procarióticas , Glucose , Água do Mar/microbiologia
15.
Sci Total Environ ; 921: 171137, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38401719

RESUMO

A flood event affecting Pindal Cave, a UNESCO World Heritage site, introduced a substantial amount of external sediments and waste into the cave. This event led to the burial of preexisting sediments, altering the biogeochemical characteristics of the cave ecosystem by introducing heightened levels of organic matter, nitrogen compounds, phosphorus, and heavy metals. The sediments included particulate matter and waste from a cattle farm located within the water catchment area of the cavity, along with diverse microorganisms, reshaping the cave microbial community. This study addresses the ongoing influence of a cattle farm on the cave ecosystem and aims to understand the adaptive responses of the underground microbial community to the sudden influx of waste allochthonous material. Here, we show that the flood event had an immediate and profound effect on the cave microbial community, marked by a significant increase in methanogenic archaea, denitrifying bacteria, and other microorganisms commonly associated with mammalian intestinal tracts. Furthermore, our findings reveal that one year after the flood, microorganisms related to the flood decreased, while the increase in inorganic forms of ammonium and nitrate suggests potential nitrification, aligning with increased abundances of corresponding functional genes involved in nitrogen cycling. The results reveal that the impact of pollution was neither recent nor isolated, and it was decisive in stopping livestock activity near the cave. The influence of the cattle farm has persisted since its establishment over the impluvium area, and this influence endures even a year after the flood. Our study emphasizes the dynamic interplay between natural events, anthropogenic activities, and microbial communities, offering insights into the resilience of cave ecosystems. Understanding microbial adaptation in response to environmental disturbances, as demonstrated in this cave ecosystem, has implications for broader ecological studies and underscores the importance of considering temporal dynamics in conservation efforts.


Assuntos
Ecossistema , Microbiota , Animais , Bovinos , Espanha , Inundações , Células Procarióticas , Nitrogênio , Mamíferos
16.
Brief Bioinform ; 25(2)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38385874

RESUMO

The three-dimensional (3D) structure of bacterial chromosomes is crucial for understanding chromosome function. With the growing availability of high-throughput chromosome conformation capture (3C/Hi-C) data, the 3D structure reconstruction algorithms have become powerful tools to study bacterial chromosome structure and function. It is highly desired to have a recommendation on the chromosome structure reconstruction tools to facilitate the prokaryotic 3D genomics. In this work, we review existing chromosome 3D structure reconstruction algorithms and classify them based on their underlying computational models into two categories: constraint-based modeling and thermodynamics-based modeling. We briefly compare these algorithms utilizing 3C/Hi-C datasets and fluorescence microscopy data obtained from Escherichia coli and Caulobacter crescentus, as well as simulated datasets. We discuss current challenges in the 3D reconstruction algorithms for bacterial chromosomes, primarily focusing on software usability. Finally, we briefly prospect future research directions for bacterial chromosome structure reconstruction algorithms.


Assuntos
Bactérias , Estruturas Cromossômicas , Células Procarióticas , Cromossomos Bacterianos/genética , Algoritmos , Escherichia coli/genética
17.
Microb Biotechnol ; 17(2): e14418, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38381083

RESUMO

CRISPR-Cas systems evolved in prokaryotes to implement a powerful antiviral immune response as a result of sequence-specific targeting by ribonucleoproteins. One of such systems consists of an RNA-guided RNA endonuclease, known as CRISPR-Cas13. In very recent years, this system is being repurposed in different ways in order to decipher and engineer gene expression programmes. Here, we discuss the functional versatility of the CRISPR-Cas13 system, which includes the ability for RNA silencing, RNA editing, RNA tracking, nucleic acid detection and translation regulation. This functional palette makes the CRISPR-Cas13 system a relevant tool in the broad field of systems and synthetic biology.


Assuntos
Sistemas CRISPR-Cas , Células Procarióticas , RNA , Ribonucleoproteínas , Biologia Sintética
18.
Mol Cell ; 84(5): 883-896.e7, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38309275

RESUMO

DNA loop-extruding SMC complexes play crucial roles in chromosome folding and DNA immunity. Prokaryotic SMC Wadjet (JET) complexes limit the spread of plasmids through DNA cleavage, yet the mechanisms for plasmid recognition are unresolved. We show that artificial DNA circularization renders linear DNA susceptible to JET nuclease cleavage. Unlike free DNA, JET cleaves immobilized plasmid DNA at a specific site, the plasmid-anchoring point, showing that the anchor hinders DNA extrusion but not DNA cleavage. Structures of plasmid-bound JetABC reveal two presumably stalled SMC motor units that are drastically rearranged from the resting state, together entrapping a U-shaped DNA segment, which is further converted to kinked V-shaped cleavage substrate by JetD nuclease binding. Our findings uncover mechanical bending of residual unextruded DNA as molecular signature for plasmid recognition and non-self DNA elimination. We moreover elucidate key elements of SMC loop extrusion, including the motor direction and the structure of a DNA-holding state.


Assuntos
DNA , Endonucleases , DNA/metabolismo , Plasmídeos/genética , Células Procarióticas , Proteínas de Ciclo Celular/metabolismo
19.
Nucleic Acids Res ; 52(4): 2012-2029, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38224450

RESUMO

In both prokaryotic and eukaryotic innate immune systems, TIR domains function as NADases that degrade the key metabolite NAD+ or generate signaling molecules. Catalytic activation of TIR domains requires oligomerization, but how this is achieved varies in distinct immune systems. In the Short prokaryotic Argonaute (pAgo)/TIR-APAZ (SPARTA) immune system, TIR NADase activity is triggered upon guide RNA-mediated recognition of invading DNA by an unknown mechanism. Here, we describe cryo-EM structures of SPARTA in the inactive monomeric and target DNA-activated tetrameric states. The monomeric SPARTA structure reveals that in the absence of target DNA, a C-terminal tail of TIR-APAZ occupies the nucleic acid binding cleft formed by the pAgo and TIR-APAZ subunits, inhibiting SPARTA activation. In the active tetrameric SPARTA complex, guide RNA-mediated target DNA binding displaces the C-terminal tail and induces conformational changes in pAgo that facilitate SPARTA-SPARTA dimerization. Concurrent release and rotation of one TIR domain allow it to form a composite NADase catalytic site with the other TIR domain within the dimer, and generate a self-complementary interface that mediates cooperative tetramerization. Combined, this study provides critical insights into the structural architecture of SPARTA and the molecular mechanism underlying target DNA-dependent oligomerization and catalytic activation.


Assuntos
Imunidade Inata , Células Procarióticas , Sistema Imunitário , NAD+ Nucleosidase , Células Procarióticas/imunologia , RNA Guia de Sistemas CRISPR-Cas , Transdução de Sinais , Eucariotos/imunologia
20.
Nucleic Acids Res ; 52(5): 2530-2545, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38197228

RESUMO

Argonaute (Ago) proteins are present in all three domains of life (bacteria, archaea and eukaryotes). They use small (15-30 nucleotides) oligonucleotide guides to bind complementary nucleic acid targets and are responsible for gene expression regulation, mobile genome element silencing, and defence against viruses or plasmids. According to their domain organization, Agos are divided into long and short Agos. Long Agos found in prokaryotes (long-A and long-B pAgos) and eukaryotes (eAgos) comprise four major functional domains (N, PAZ, MID and PIWI) and two structural linker domains L1 and L2. The majority (∼60%) of pAgos are short pAgos, containing only the MID and inactive PIWI domains. Here we focus on the prokaryotic Argonaute AfAgo from Archaeoglobus fulgidus DSM4304. Although phylogenetically classified as a long-B pAgo, AfAgo contains only MID and catalytically inactive PIWI domains, akin to short pAgos. We show that AfAgo forms a heterodimeric complex with a protein encoded upstream in the same operon, which is a structural equivalent of the N-L1-L2 domains of long pAgos. This complex, structurally equivalent to a long PAZ-less pAgo, outperforms standalone AfAgo in guide RNA-mediated target DNA binding. Our findings provide a missing piece to one of the first and the most studied pAgos.


Assuntos
Proteínas Arqueais , Archaeoglobus fulgidus , Proteínas Argonautas , Archaeoglobus fulgidus/metabolismo , Proteínas Argonautas/metabolismo , Bactérias/genética , Eucariotos/genética , Células Procarióticas/metabolismo , Domínios Proteicos , RNA Guia de Sistemas CRISPR-Cas , Proteínas Arqueais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...